
▪ A Type I error occurs when you incorrectly reject the null hypothesis. (i.e. the null hypothesis was 
correct, but you rejected it) 

 The probability of a Type I error is the same as the actual significance level of the test. 

 When dealing with a continuous distribution, the probability of a Type I error is the same as 
the significance level of the test. 

▪ A Type II error occurs when you incorrectly accept the null hypothesis. (i.e. the null hypothesis was 
wrong, but you accepted it) 

▪ To find 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟), we take the null hypothesis to be true and find the probability that our variable
falls in the critical region.

▪ To find 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟), we take the null hypothesis to be incorrect and find the probability that our
variable doesn’t fall in the critical region. You will be given the true value of the population parameter 
being tested if you are asked to find 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟).

Finding Type I and Type II errors with normal distributions 
You also need to be able to find Type I and Type II errors using the normal distribution. The principle is the same as 
before. 

The relationship between Type I and Type II errors  
The above example gives us an insight into the relationship between Type I and Type II errors. From part a to part 
b we lowered the significance level from 5% to 1%. In other words, we reduced the 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) from 5% to 
1%. As we did this however, the 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) increased. In part c you found that 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) went from 
0.1963 to 0.4311. This highlights the inverse relationship between Type I and Type II errors; as you reduce the Type 
I error, the Type II error will increase.    

This is why a smaller significance level isn’t necessarily optimal. A smaller significance level will increase the 
probability of a Type II error, which could potentially have serious consequences depending on the context of the 
hypothesis test. For example, if you are carrying out a test to determine whether a testing procedure for a disease 
functions as required, then a Type II error would cause you to conclude that the procedure works well even though 
it in fact doesn’t. This could lead to patients being told they don’t have the disease even when they do, which as 
you can imagine is highly serious since diseases would potentially go untreated. 

A Type I error on the other hand would cause the procedure is concluded inadequate even though it does in fact 
work fine, which isn’t such a bad outcome since we would then naturally resort to other testing procedures. In this 
case, a Type II error is much more serious than a Type I error and thus we would aim to minimise the Type II error, 
possibly by avoiding a low significance level such as 1%. 

Calculating the size and power of a test 
You need to be able to understand what is meant by the size and power of a test and be able to calculate them.  

▪ The size of a test is equal to the probability of a Type I error. This is the probability of incorrectly 
rejecting the null hypothesis. 

▪ The probability of rejecting the null hypothesis when it is false is known as the power of the test.

▪ 𝑃𝑜𝑤𝑒𝑟 = 1 − 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) 

Simply put, the power is a measure of how good the test performs when the null hypothesis is in fact incorrect. 
Since the power is a probability, it can only take values in the range 0 ≤ 𝑝𝑜𝑤𝑒𝑟 ≤ 1. 

Quality of Tests Cheat Sheet
Hypothesis tests are not perfect. They can lead to incorrect conclusions which can have serious consequences, 
depending on the context of the hypothesis test. The aim of this chapter is to be able to quantify the reliability of a 
hypothesis test. We will look at the different errors that can occur, learn to calculate the probability with which 
they occur and understand what is meant by the size and power of a test. 

Type I and Type II errors 
You need to understand what Type I and Type II errors are, and how to find the probability with which they occur 
in a given scenario. 

 

The power function 
In part b of the above example, we were told the actual value of the population parameter 𝜆, which allowed us to 
find the power. In practice however, population parameters are often unknown which means we cannot 
determine the power of the test in the same way we did above. In such situations, what we can do instead is find 
a function which describes the power of the test in terms of the relevant population parameter. This allows us to 
see how the power varies for different values of the parameter. 

▪ The power function of a test is the function of the parameter 𝜃 which gives the probability that the 
test statistic will fall in the critical region of the test if 𝜃 is the true value of the parameter.

▪ You can use the power function to plot a graph of power against 𝜃.

▪ When comparing two tests of similar size, you should recommend the test with the higher power 
within the likely range of the parameter.

 

Example 1: Accidents occurred on a stretch of motorway at an average rate of 6 per month. Many of the accidents that occurred 
involved vehicles skidding into the back of other vehicles. By way of a trial, a new type of road surface that is said to reduce the risk 
of vehicles skidding is laid on this stretch of road, and during the first month of operation 4 accidents occurred. 

(a) Test this result to see if it gives evidence that there has been an improvement at the 5% level of significance.
(b) Calculate 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) for this test. 
(c) If the true average rate of accidents occurring with the new type of road surface was 3.5, calculate the probability of a Type II
error. 

(a) We are dealing with a Poisson distribution. We start
by defining the distribution: 

Let 𝑋 represent the number of accidents occurring in a given 
month, then 𝑋~𝑃𝑜(6). 

Now we state our hypotheses. We are testing for a 
reduction in the risk of vehicles skidding, so the 
alternative hypothesis is 𝜆 < 6.

𝐻0: 𝜆 = 6 
𝐻1: 𝜆 < 6 

Finding 𝑃(𝑋 ≤ 4) and comparing it to the significance 
level:

𝑃(𝑋 ≤ 4) = 0.2851 > 0.05 
Insufficient evidence to reject 𝐻0. The average number of 
accidents per month has not been reduced. 

(b) To find 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟), we take the null hypothesis 
to be true and find the probability that our variable falls 
in the critical region. 

𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋 𝑓𝑎𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛) 

Finding the critical region: 
You can use the statistical tables or your calculator to do
this. 

𝑃(𝑋 ≤ 2) = 0.0620 > 0.05 
𝑃(𝑋 ≤ 1) = 0.0174 < 0.05 
∴ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑠 𝑋 ≤ 1. 

So the required probability is: ∴ 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋 ≤ 1) = 0.0174 

(c) To find 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟), we assume that the mean
is in fact 3.5 and find the probability that our variable 
doesn’t fall in the critical region. 

We need to find the probability that 𝑋 does not lie in the critical 
region given that the mean 𝜆 is in fact 3.5. 
Now we have that 𝑋~𝑃𝑜(3.5). 

So the required probability is: 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋 ≥ 2) = 1 − 𝑃(𝑋 ≤ 1) 
= 1 − 0.1359 = 0.8641 

Example 2: The random variable 𝑋 is geometrically distributed, and it is desired to test 𝐻0: 𝑝 = 0.2 against  
𝐻1: 𝑝 < 0.2, using a 5% level of significance. 

(a) Calculate the critical region for this test.
(b) State the probability of a Type I error for this test and, given that the true probability was found to be 𝑝 = 0.05, calculate the 
probability of a Type II error. 

(a) We start by defining the distribution we are dealing with:

We are testing for 𝑝 < 0.2, so we need to find the lowest value of 
𝑐 such that 𝑃(𝑋 ≥ 𝑐) < 0.05 

Taking logs of both sides then making use of the power rule for 
logs:

Dividing through by log 0.8:
Since log 0.8  <  0, the inequality flips. 

All integers greater than 14.425 form the critical region.

(b) 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛)

To find 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟), we take 𝑝 = 0.05 and find the 
probability 𝑋 is not in the critical region. 

𝑋~𝐺𝑒𝑜(0.2) 

𝑃(𝑋 ≥ 𝑐) = (1 − 0.2)𝑐−1 < 0.05 
0.8𝑐−1 < 0.05 

log(0.8𝑐−1) < log(0.05) 
(𝑐 − 1) log 0.8 < log 0.05 

log 0.05
𝑐 − 1 > ∴ 𝑐 > 14.425 

log 0.8

So the critical region is 𝑋 ≥ 15. 

∴ 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋 ≥ 15) = (1 − 0.2)15−1 = 0.814

= 0.0440 (4 𝑑. 𝑝. ) 

So we have 𝑋~𝐺𝑒𝑜(0.05). 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋 ≤14)  
= 1 − (1 − 0.05)14 = 0.5123 (4 𝑑. 𝑝. ) 

Example 3: The weight of jam in a jar, measured in grams, is distributed normally with a mean of 150g and a standard deviation of 
6g. The production process occasionally leads to a change in the mean weight of jam per jar but the standard deviation remains 
unaltered. 

The manager monitors the production process and for every new batch takes a random sample of 25 jars and weighs their contents 
to see if there has been any reduction in the mean weight of jam per jar. 

Find the critical values for the test statistic 𝑋ത, the mean weight of jam in a sample of 25 jars, using: 
(a) a 5% level of significance 
(b) a 1% level of significance. 
Given that the true value of𝜇 for the new batch is in fact 147, 
(c) Find the probability of a Type II error for each of the above critical regions. 

𝐻0: 𝜇 = 150 
𝐻1: 𝜇 < 150 

𝑋ത~𝑁 ቆ150,
62

25
ቇ 

For a 5% significance level, 𝑍 < −1.6449 

So 
𝑋ത−150

6

ξ25

≤ −1.6449 

𝑋ത ≤ 148.03 (2 𝑑. 𝑝. ) 

For a 1% significance level, 𝑍 < −2.3263 

So 
𝑋ത−150

6

ξ25

≤ −2.3263 

𝑋ത ≤ 147.21 (2 𝑑. 𝑝. ) 

Now we have 𝑋ത~𝑁 ቀ147,
62

25
ቁ 

For part a, 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋ത > 148.03) 
= 0.1963 (4 𝑑. 𝑝. ) 

(a) We start by stating our hypotheses. We are testing for a 
reduction in the mean, so we have a one-tail test. 
Use the central limit theorem to denote the distribution of the 
sample mean. The sample size is 25. 

Find the critical value at the 5% level of significance.

Rearrange the expression and round the solution to 2 d.p.

(b) Find the critical value at the 1% level of significance.

Rearrange the expression and round the solution to 2 d.p.

c) Find the probability that 𝑋ത is outside the critical region we 
found in part a given that the mean is actually 147.

Find the probability that 𝑋ത is outside the critical region we 
found in part b given that the mean is actually 147. 

For part b, 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋ത > 147.21) 
= 0.4311 (4 𝑑. 𝑝. ) 

Example 4: The random variable 𝑋 has a Poisson distribution. A sample is taken, and it is desired to test 𝐻0: 𝜆 = 4.5 against 𝐻1: 𝜆 <
4.5 using a 5% significance level. 
(a) Find the size of this test. 
(b) Given that 𝜆 = 4.1, find the power of this test.

(a) We begin by defining the distribution: 𝑋~𝑃𝑜(8)  

The size is equal to 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟). This is the probability
that X falls in the critical region. So finding the critical 
region:

𝑃(𝑋 ≤ 1) = 0.0611 > 0.05 
𝑃(𝑋 = 0) = 0.0111 < 0.05 
So the critical region is 𝑋 = 0 

We already saw that 𝑃(𝑋 = 0) = 0.0111 ∴ 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑋 = 0) = 0.0111 

(b) Our distribution becomes: 𝑋~𝑃𝑜(4.1) 

We simply need to find 𝑃(𝑋 = 0) using 𝜆 = 4.1. 
𝑃(𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0) = 𝑃(𝑋 = 0) =

𝑒−4.1(4.1)0

0!
= 0.0166 

Example 6: A single observation, 𝑥, is to be taken form a Poisson distribution with parameter 𝜇. This observation is to be used to test 
𝐻0: 𝜇 = 6 against 𝐻1: 𝜇 < 6. The critical region is chosen to be 𝑥 ≤ 2. 

(a) Show that the power function is given by
1

2
𝑒−𝜇(2 + 2𝜇 + 𝜇2). 

The table gives the values of the power function to 2 decimal places.

(b) Calculate the value of 𝑠.
(c) Draw a graph of the power function.
(d) Estimate the range of values of 𝜇 for which the power of this test is greater than 0.6.

(a) First denoting our distribution: 𝑋~𝑃𝑜(6)  

The power is equal to the probability that 𝑋 falls within the 
critical region. This is 𝑃(𝑋 ≤ 2). 

𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑋 ≤ 2) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) 

𝑃(𝑋 = 0) =
𝑒−𝜇(𝜆)0

0!
= 𝑒−𝜇 

𝑃(𝑋 = 1) =
𝑒−𝜇(𝜆)1

1!
= 𝜇𝑒−𝜇 

𝑃(𝑋 = 2) =
𝑒−𝜇(𝜇)2

2!
=

1

2
𝜇2𝑒−𝜇 

∴ 𝑃𝑜𝑤𝑒𝑟 = 𝑒−𝜇 + 𝜇𝑒−𝜇 +
1

2
𝜇2𝑒−𝜇 

=
1

2
𝑒−𝜇(2 + 2𝜇 + 𝜇2) as required. 

(b) Substituting 𝜇 = 2 into the power function: 
𝑠 =

1

2
𝑒−2(2 + 2(2) + 22) = 0.6767 (4 𝑑. 𝑝. ) 

(c) Sketching the graph: 

(d) We need to first estimate the value of 𝜇 for which the 
power is 0.6. To do this, we find where the curve intersects 
the line 𝑃𝑜𝑤𝑒𝑟 = 0.8 and look at the corresponding value 
of 𝜇.

The curve is above 𝑃𝑜𝑤𝑒𝑟 = 0.6 for  𝜇 < 2.4. The line 𝑃𝑜𝑤𝑒𝑟 = 0.6 intersects the curve at approximately 𝜇 =
2.4. So the power of the test is greater than 0.6 for 𝜇 < 2.4. 

μ 1.0 1.5 2.0 4.0 5.0 6.0 7.0 

Power 0.92 0.81 𝑠 0.24 0.12 0.06 0.03 

(c) (d) 

Example 5: In a binomial experiment consisting of 12 trials, the random variable 𝑋 representsd the number of success and 𝑝 the 
probability of success. In a test of 𝐻0: 𝑝 = 0.45 against 𝐻1: 𝑝 < 0.45 the null hypothesis is rejected if the number of successes is 2 or 
less. Show that the power function for this test is given by (1 − 𝑝)12 + 12(𝑝)(1 − 𝑝)11 + 66(𝑝)2(1 − 𝑝)10. 

We begin by defining the distribution: 𝑋~𝐵(12, 0.45)  

𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑋 𝑖𝑛 𝐶. 𝑅. ) = 𝑃(𝑋 ≤ 2) 𝑃𝑜𝑤𝑒𝑟 = 𝑃(𝑋 ≤ 2) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) 

Working out each probability individually using the 
probability mass function for a binomial random variable: 

𝑃(𝑋 = 0) = (1 − 𝑝)12, 𝑃(𝑋 = 1) = 12(1 − 𝑝)(𝑝)11 
𝑃(𝑋 = 2) = 66(1 − 𝑝)2(𝑝)8 

Adding the probabilities together: ∴ 𝑃𝑜𝑤𝑒𝑟 = (1 − 𝑝)12 + 12(𝑝)(1 − 𝑝)11 + 66(𝑝)2(1 − 𝑝)10 
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